Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.029
Filtrar
1.
Sci Total Environ ; 927: 172205, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599397

RESUMEN

Adaptation measures are essential for reducing the impact of future climate risks on agricultural production systems. The present study focuses on implementing an adaptation strategy to mitigate the impact of future climate change on rainfed maize production in the Eastern Kansas River Basin (EKSRB), an important rainfed maize-producing region in the US Great Plains, which faces potential challenges of future climate risks due to a significant east-to-west aridity gradient. We used a calibrated CERES-Maize crop model to evaluate the impacts of baseline climate conditions (1985-2014), late-term future climate scenarios (under the SSP245 emission pathway and CMIP6 models), and a novel root proliferation adaptation strategy on regional maize yield and rainfall productivity. Changes in the plant root system by increasing the root density could lead to yield benefits, especially under drought conditions. Therefore, we modified the governing equation of soil root growth in the CERES-Maize model to reflect the genetic influence of a maize cultivar to improve root density by proliferation. Under baseline conditions, maize yield values ranged from 6522 to 12,849 kgha-1, with a regional average value of 9270 kgha-1. Projections for the late-term scenario indicate a substantial decline in maize yield (36 % to 50 %) and rainfall productivity (25 % to 42 %). Introducing a hypothetical maize cultivar by employing root proliferation as an adaptation strategy resulted in a 27 % increase in regional maize yield, and a 28 % increase in rainfall productivity compared to the reference cultivar without adaptation. We observed an indication of spatial dependency of maize yield and rainfall productivity on the regional precipitation gradient, with counties towards the east having an implicit advantage over those in the west. These findings offer valuable insights for the US Great Plains maize growers and breeders, guiding strategic decisions to adapt rainfed maize production to the region's impending challenges posed by climate change.


Asunto(s)
Cambio Climático , Productos Agrícolas , Raíces de Plantas , Zea mays , Zea mays/crecimiento & desarrollo , Zea mays/fisiología , Raíces de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos , Producción de Cultivos/métodos , Lluvia
2.
Sci Total Environ ; 927: 172147, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569966

RESUMEN

Soil organic matter (SOM) plays a pivotal role in enhancing physical and biological characteristics of soil. Humic substances constitute a substantial proportion of SOM and their increase can improve crop yields and promote agricultural sustainability. While previous research has primarily assessed the influence that humic acids (HAs) derived from natural water have on soil structure, our study focuses on the impact of HAs on soil aggregation under different fertilizer regimes. During the summer cropping season, maize was cultivated under organic and synthetic fertilizer treatments. The organic fertilizer treatment utilized barley (Hordeum vulgare L.) and hairy vetch (Vicia villosa R.) as an organic amendment five days prior to maize planting. The synthetic treatment included a synthetic fertilizer (NPK) applied at South Korea's recommended rates. The organic treatment resulted in significant improvements in the soil aggregates and stability (mean weight diameter, MWD; p < 0.05) compared to the synthetic fertilizer application. These improvements could be primarily attributed to the increased quantity and quality of HAs in the soil derived from the organic amendment. The amount of extracted HAs in the organic treatment was nearly twice that of the synthetic treatment. Additionally, the organic treatment had a 140 % larger MWD and a 40 % increase in total phenolic content compared to the synthetic treatment. The organic treatment also had an increased macronutrient uptake (p < 0.001), an 11 % increase in aboveground maize biomass, and a 21 % increase in grain yield relative to the synthetic treatment. Thus, the enhancement of HA properties through the incorporation of fresh organic manure can both directly and indirectly increase crop productivity.


Asunto(s)
Fertilizantes , Sustancias Húmicas , Suelo , Zea mays , Sustancias Húmicas/análisis , Suelo/química , Zea mays/crecimiento & desarrollo , República de Corea , Agricultura/métodos
3.
Sci Rep ; 14(1): 9151, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644368

RESUMEN

Limited commercial quality protein maize (QPM) varieties with low grain yield potential are currently grown in Eastern and Southern Africa (ESA). This study was conducted to (i) assess the performance of single-cross QPM hybrids that were developed from elite inbred lines using line-by-tester mating design and (ii) estimate the general (GCA) and specific (SCA) combining ability of the QPM inbred lines for grain yield, agronomic and protein quality traits. One hundred and six testcrosses and four checks were evaluated across six environments in ESA during 2015 and 2016. Significant variations (P ≤ 0.01) were observed among environments, genotypes and genotype by environment interaction (GEI) for most traits evaluated. Hybrids H80 and H104 were the highest-yielding, most desirable, and stable QPM hybrids. Combining ability analysis showed both additive and non-additive gene effects to be important in the inheritance of grain yield. Additive effects were more important for agronomic and protein quality traits. Inbred lines L19 and L20 depicted desirable GCA effects for grain yield. Various other inbred lines with favorable GCA effects for agronomic traits, endosperm modification, and protein quality traits were identified. These inbred lines could be utilized for breeding desirable QPM cultivars. The QPM hybrids identified in this study could be commercialized after on-farm verification to replace the low-yielding QPM hybrids grown in ESA.


Asunto(s)
Fitomejoramiento , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Fitomejoramiento/métodos , África Austral , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , África Oriental , Genotipo , Cruzamientos Genéticos , Endogamia , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
BMC Plant Biol ; 24(1): 304, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644487

RESUMEN

Biochar is a promising solution to alleviate the negative impacts of salinity stress on agricultural production. Biochar derived from food waste effect was investigated on three plant species, Medicago sativa, Amaranthus caudatus, and Zea mays, under saline environments. The results showed that biochar improved significantly the height by 30%, fresh weight of shoot by 35% and root by 45% of all three species compared to control (saline soil without biochar adding), as well as enhanced their photosynthetic pigments and enzyme activities in soil. This positive effect varied significantly between the 3 plants highlighting the importance of the plant-biochar interactions. Thus, the application of biochar is a promising solution to enhance the growth, root morphology, and physiological characteristics of plants under salt-induced stress.


Asunto(s)
Amaranthus , Carbón Orgánico , Medicago sativa , Suelo , Zea mays , Amaranthus/efectos de los fármacos , Amaranthus/crecimiento & desarrollo , Amaranthus/fisiología , Zea mays/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Zea mays/fisiología , Medicago sativa/efectos de los fármacos , Medicago sativa/crecimiento & desarrollo , Medicago sativa/fisiología , Suelo/química , Salinidad , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos
5.
Sci Rep ; 14(1): 9361, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654091

RESUMEN

With the improvements in mechanization levels, it is difficult for the traditional intercropping planting patterns to meet the needs of mechanization. In the traditional maize‒soybean intercropping, maize has a shading effect on soybean, which leads to a decrease in soybean photosynthetic capacity and stem bend resistance, resulting in severe lodging, which greatly affects soybean yield. In this study, we investigated the effects of three intercropping ratios (four rows of maize and four rows of soybean; four rows of maize and six rows of soybean; six rows of maize and six rows of soybean) and two planting patterns (narrow-wide row planting pattern of 80-50 cm and uniform-ridges planting pattern of 65 cm) on soybean canopy photosynthesis, stem bending resistance, cellulose, hemicellulose, lignin and related enzyme activities. Compared with the uniform-ridge planting pattern, the narrow-wide row planting pattern significantly increased the LAI, PAR, light transmittance and compound yield by 6.06%, 2.49%, 5.68% and 5.95%, respectively. The stem bending resistance and cellulose, hemicellulose, lignin and PAL, TAL and CAD activities were also significantly increased. Compared with those under the uniform-ridge planting pattern, these values increased by 7.74%, 3.04%, 8.42%, 9.76%, 7.39%, 10.54% and 8.73% respectively. Under the three intercropping ratios, the stem bending resistance, cellulose, hemicellulose, lignin content and PAL, TAL, and CAD activities in the M4S6 treatment were significantly greater than those in the M4S4 and M6S6 treatments. Compared with the M4S4 treatment, these variables increased by 12.05%, 11.09%, 21.56%, 11.91%, 18.46%, 16.1%, and 16.84%, respectively, and compared with the M6S6 treatment, they increased by 2.06%, 2.53%, 2.78%, 2.98%, 8.81%, 4.59%, and 4.36%, respectively. The D-M4S6 treatment significantly improved the lodging resistance of soybean and weakened the negative impact of intercropping on soybean yield. Therefore, based on the planting pattern of narrow-wide row maize‒soybean intercropping planting pattern, four rows of maize and six rows of soybean were more effective at improving the lodging resistance of soybean in the semiarid region of western China.


Asunto(s)
Soja , Fotosíntesis , Zea mays , Soja/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Zea mays/fisiología , Celulosa/metabolismo , Lignina/metabolismo , Agricultura/métodos , Polisacáridos/metabolismo , Producción de Cultivos/métodos
6.
Theor Appl Genet ; 137(5): 112, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662228

RESUMEN

KEY MESSAGE: Two key genes Zm00001d021232 and Zm00001d048138 were identified by QTL mapping and GWAS. Additionally, they were verified to be significantly associated with maize husk number (HN) using gene-based association study. As a by-product of maize production, maize husk is an important industrial raw material. Husk layer number (HN) is an important trait that affects the yield of maize husk. However, the genetic mechanism underlying HN remains unclear. Herein, a total of 13 quantitative trait loci (QTL) controlling HN were identified in an IBM Syn 10 DH population across different locations. Among these, three QTL were individually repeatedly detected in at least two environments. Meanwhile, 26 unique single nucleotide polymorphisms (SNPs) were detected to be significantly (p < 2.15 × 10-6) associated with HN in an association pool. Of these SNPs, three were simultaneously detected across multiple environments or environments and best linear unbiased prediction (BLUP). We focused on these environment-stable and population-common genetic loci for excavating the candidate genes responsible for maize HN. Finally, 173 initial candidate genes were identified, of which 22 were involved in both multicellular organism development and single-multicellular organism process and thus confirmed as the candidate genes for HN. Gene-based association analyses revealed that the variants in four genes were significantly (p < 0.01/N) correlated with HN, of which Zm00001d021232 and Zm00001d048138 were highly expressed in husks and early developing ears among different maize tissues. Our study contributes to the understanding of genetic and molecular mechanisms of maize husk yield and industrial development in the future.


Asunto(s)
Mapeo Cromosómico , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Mapeo Cromosómico/métodos , Genes de Plantas , Estudio de Asociación del Genoma Completo , Estudios de Asociación Genética , Desequilibrio de Ligamiento , Genotipo
7.
Plant Cell Rep ; 43(5): 126, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652181

RESUMEN

KEY MESSAGE: Innovatively, we consider stomatal detection as rotated object detection and provide an end-to-end, batch, rotated, real-time stomatal density and aperture size intelligent detection and identification system, RotatedeStomataNet. Stomata acts as a pathway for air and water vapor in the course of respiration, transpiration, and other gas metabolism, so the stomata phenotype is important for plant growth and development. Intelligent detection of high-throughput stoma is a key issue. Nevertheless, currently available methods usually suffer from detection errors or cumbersome operations when facing densely and unevenly arranged stomata. The proposed RotatedStomataNet innovatively regards stomata detection as rotated object detection, enabling an end-to-end, real-time, and intelligent phenotype analysis of stomata and apertures. The system is constructed based on the Arabidopsis and maize stomatal data sets acquired destructively, and the maize stomatal data set acquired in a non-destructive way, enabling the one-stop automatic collection of phenotypic, such as the location, density, length, and width of stomata and apertures without step-by-step operations. The accuracy of this system to acquire stomata and apertures has been well demonstrated in monocotyledon and dicotyledon, such as Arabidopsis, soybean, wheat, and maize. The experimental results that the prediction results of the method are consistent with those of manual labeling. The test sets, the system code, and their usage are also given ( https://github.com/AITAhenu/RotatedStomataNet ).


Asunto(s)
Arabidopsis , Fenotipo , Estomas de Plantas , Zea mays , Estomas de Plantas/fisiología , Zea mays/genética , Zea mays/fisiología , Zea mays/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/fisiología
8.
Science ; 382(6669): 364-367, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37883569

RESUMEN

Plants bred or engineered to be short can stand up better to windstorms. They could also boost yields and benefit the environment.


Asunto(s)
Grano Comestible , Fitomejoramiento , Zea mays , Zea mays/anatomía & histología , Zea mays/genética , Zea mays/crecimiento & desarrollo , Viento , Ingeniería Genética , Grano Comestible/anatomía & histología , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Estados Unidos
9.
Sci Rep ; 13(1): 12956, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563236

RESUMEN

Upper Egypt experiences high temperatures during summer and low temperatures during winter, which significantly impacts the sowing dates of maize in this region. The productivity of maize crops and water use efficiency can be greatly affected by water stress and sowing dates (SDs). Therefore, it is crucial to determine the optimal irrigation level and SDs based on local conditions. To assess the effects, two irrigation levels were employed: (1) control (full irrigation water applied) and (2) 70% of irrigation water. Field experiments were conducted at the National Water Research Center's water studies and research complex station in Toshka. The aim was to evaluate two irrigation levels (full and limited irrigation) across five SDs (early: mid-February and March, normal: mid-June, and late: mid-August and September) in both 2019 and 2020, in order to identify the ideal sowing date (SD) and irrigation level. The normal SD resulted in an increased the growth season length between plant emergence and maturity. Conversely, the late SD reduced the number of days until plant maturity, resulting in higher grain yields and water use efficiency (WUE). Notably, the SD in September, coupled with the 70% irrigation level, yielded the highest productivity and WUE, with a productivity of 7014 kg ha-1 and a WUE of 0. 9 kg m-3. Based on the findings, it is recommended that regions with similar conditions consider cultivating maize seeds in September, adopting a 70% irrigation level, to achieve optimal N uptake, growth traits (plant height, ear length, ear weight, number of rows per ear, and grain index weight), yield, and WUE.


Asunto(s)
Agricultura , Conservación de los Recursos Hídricos , Zea mays , Zea mays/crecimiento & desarrollo , Riego Agrícola , Egipto , Cambio Climático , Ambiente , Estaciones del Año , Tiempo (Meteorología)
10.
Plant Foods Hum Nutr ; 78(2): 351-357, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37145379

RESUMEN

Cacahuacintle is one of the maize types with great demand for pozole preparation; however, little is known about the variation in chemical composition and flowered grain quality among populations. Physicochemical characteristics, flowered grain quality, pasting properties, and starch microstructure were evaluated in 33 populations of Cacahuacintle maize collected in Valles Altos, Mexico. The seeds samples of corn were obtained in 2017 from local farmers in the states of Mexico, Puebla, and Tlaxcala. Results were analyzed under a completely randomized design, and the ANOVA, Tukey test, and principal components were obtained. The ANOVA showed significance (p ≤ 0.05) in 18 of the 22 variables evaluated. The TE-6, AM-7, and CA-6 populations were outstanding for the good quality of their protein, pasting viscosity, and flowered grain quality. Nine populations collected in Calimaya, estate of Mexico, and Serdan Valley, state of Puebla, presented excellent physical, pasting, and flowery grain characteristics, with reduced protein content and lysine and tryptophan values typical of maize with normal endosperm. The softness of the endosperm grain, starch microstructural, and pasting characteristics of Cacahuacintle maize populations have a fundamental role in reducing the time and increasing the flowered grain volume, properties that were different from those observed in the Chalqueño, included as dent maize check. Variations in grain quality among Cacahuacintle maize populations is an important genetic resource for the improvement of the nutritional and flowering quality of Cacahuacintle maize.


Asunto(s)
Almidón , Zea mays , Grano Comestible/química , México , Almidón/química , Viscosidad , Zea mays/química , Zea mays/crecimiento & desarrollo
11.
J Environ Manage ; 338: 117711, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36996557

RESUMEN

Plastic film mulching is used widely to increase crop yields in semiarid areas, but improving the soil fertility in film mulched fields is also important for achieving sustainable high yields in northwest of China. In this study, a completely randomized two-factor field design experiment was conducted in Pengyang, Ningxia, China during 2017-2021. In order to investigate the effects of plastic film mulching with straw/biochar addition on the soil aggregate characteristics, organic carbon content, and maize yield. Six treatments were established as follows: control (C), straw (S), biochar (B), plastic film mulching (F), plastic film mulching with added straw (FS) or biochar (FB). After 5 years of continuous production, each straw and biochar addition treatments significantly improved the soil aggregate distribution and stability, and the average aggregate content >0.25 mm increased significantly by 47.32%. Compared with the treatments without plastic film mulching, the mean weight diameter and geometric mean diameter of the soil particles increased by 9.19% and 4.15%, respectively, under the plastic film mulching treatments. The organic carbon content of the 0-60 cm soil layer increased significantly under each straw and biochar addition treatment compared with the without straw. The aggregate organic carbon contents under each treatment increased as the aggregate particle size increased, where the straw and biochar addition treatments significantly increased the organic carbon content of the aggregates, whereas the contents decreased under the plastic film mulching treatments. The contributions of the soil aggregates >0.25 mm to the organic carbon contents of the 0-60 cm soil layer were significantly higher under FS (37.63%) and FB (56.45%) than F. Structural equation modeling showed that straw/biochar added, plastic film mulching, and a greater soil organic carbon content could significantly promote yield increases, where the straw and biochar addition treatments significantly increased the average maize by 14.6% on average. In conclusion, carbon input as straw, especially biochar, had a positive effect on improving the soil organic carbon content and maize yield under plastic film mulching farmland in a semiarid region.


Asunto(s)
Carbono , Producción de Cultivos , Suelo , Zea mays , Carbono/química , China , Plásticos , Suelo/química , Zea mays/crecimiento & desarrollo
12.
Plant Cell ; 34(11): 4232-4254, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36047828

RESUMEN

Maternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labeled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologs SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.


Asunto(s)
Grano Comestible , Glucosa , Transportadores de Nitrato , Transportador de Péptidos 1 , Proteínas de Plantas , Sacarosa , Zea mays , Humanos , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Glucosa/metabolismo , Células HEK293 , Transportadores de Nitrato/genética , Transportadores de Nitrato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Transporte Biológico
13.
Proc Natl Acad Sci U S A ; 119(31): e2121288119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878042

RESUMEN

The hormone gibberellin (GA) controls plant growth and regulates growth responses to environmental stress. In monocotyledonous leaves, GA controls growth by regulating division-zone size. We used a systems approach to investigate the establishment of the GA distribution in the maize leaf growth zone to understand how drought and cold alter leaf growth. By developing and parameterizing a multiscale computational model that includes cell movement, growth-induced dilution, and metabolic activities, we revealed that the GA distribution is predominantly determined by variations in GA metabolism. Considering wild-type and UBI::GA20-OX-1 leaves, the model predicted the peak in GA concentration, which has been shown to determine division-zone size. Drought and cold modified enzyme transcript levels, although the model revealed that this did not explain the observed GA distributions. Instead, the model predicted that GA distributions are also mediated by posttranscriptional modifications increasing the activity of GA 20-oxidase in drought and of GA 2-oxidase in cold, which we confirmed by enzyme activity measurements. This work provides a mechanistic understanding of the role of GA metabolism in plant growth regulation.


Asunto(s)
Frío , Sequías , Regulación de la Expresión Génica de las Plantas , Giberelinas , Modelos Biológicos , Hojas de la Planta , Regulación Enzimológica de la Expresión Génica , Giberelinas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/crecimiento & desarrollo , Zea mays/enzimología , Zea mays/crecimiento & desarrollo
14.
Environ Sci Pollut Res Int ; 29(56): 84844-84860, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35788488

RESUMEN

The influence of growing season rainfall on agricultural production is indisputable. In Morocco, the production of crops such as barley, maize, and wheat is impacted by growing season rainfall. Due to persistent gaps in growing season rainfall and other drivers of crop yield, crops have experienced observed yields that are often below projected or potential yields. However, there are currently no studies that have quantified these gaps in yield and growing season rainfall in Morocco. To achieve this objective, time-series crop yield for all three crops and growing season rainfall data for the period 1991-2020 were collected from FAOSTAT and the World Bank climate portal, respectively. Growing season rainfall and crop yield data for the spatial variations were culled from System National de Suivi Agrometeorologique (GCMS) and the yield gaps atlas, respectively, for the same historical period. The data were subjected to bias correction to handle uncertainty. The projected/simulated crop yields and growing season rainfall were computed by regression analysis. Crop yield and growing season rainfall gaps were determined by establishing the difference between the projected and observed crop yields and rainfall data. The results show that observed and simulated wheat have a stronger relationship when compared to the other crops. Also, most years with crop yield gaps are associated with growing season rainfall gaps. Wheat records the lowest number of years with yield gaps and the highest number of years with growing season rainfall gaps during the entire data series. Therefore, even though yield gaps are strongly tied to growing season rainfall gaps, it is not the case for wheat, and therefore other drivers might be important because wheat has the lowest number of years with crop yield gaps and the highest number of years with growing season rainfall gaps. Spatially, yield and growing season rainfall gaps decline with increased latitude. The broader perspective and policy implication here is that a better understanding of yield and growing season rainfall gaps mandates an understanding of growing season rainfall and other drivers of yield. As a way forward, potential research should focus on identifying the drivers of yield gaps, sub-national experimentation at the plot level as well as on closing yield gaps through water and nutrient management.


Asunto(s)
Agricultura , Productos Agrícolas , Clima , Cambio Climático , Productos Agrícolas/crecimiento & desarrollo , Marruecos , Estaciones del Año , Triticum/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Hordeum/crecimiento & desarrollo
15.
Proc Natl Acad Sci U S A ; 119(27): e2100036119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35771940

RESUMEN

Native Americans domesticated maize (Zea mays ssp. mays) from lowland teosinte parviglumis (Zea mays ssp. parviglumis) in the warm Mexican southwest and brought it to the highlands of Mexico and South America where it was exposed to lower temperatures that imposed strong selection on flowering time. Phospholipids are important metabolites in plant responses to low-temperature and phosphorus availability and have been suggested to influence flowering time. Here, we combined linkage mapping with genome scans to identify High PhosphatidylCholine 1 (HPC1), a gene that encodes a phospholipase A1 enzyme, as a major driver of phospholipid variation in highland maize. Common garden experiments demonstrated strong genotype-by-environment interactions associated with variation at HPC1, with the highland HPC1 allele leading to higher fitness in highlands, possibly by hastening flowering. The highland maize HPC1 variant resulted in impaired function of the encoded protein due to a polymorphism in a highly conserved sequence. A meta-analysis across HPC1 orthologs indicated a strong association between the identity of the amino acid at this position and optimal growth in prokaryotes. Mutagenesis of HPC1 via genome editing validated its role in regulating phospholipid metabolism. Finally, we showed that the highland HPC1 allele entered cultivated maize by introgression from the wild highland teosinte Zea mays ssp. mexicana and has been maintained in maize breeding lines from the Northern United States, Canada, and Europe. Thus, HPC1 introgressed from teosinte mexicana underlies a large metabolic QTL that modulates phosphatidylcholine levels and has an adaptive effect at least in part via induction of early flowering time.


Asunto(s)
Adaptación Fisiológica , Flores , Interacción Gen-Ambiente , Fosfatidilcolinas , Fosfolipasas A1 , Proteínas de Plantas , Zea mays , Alelos , Mapeo Cromosómico , Flores/genética , Flores/metabolismo , Genes de Plantas , Ligamiento Genético , Fosfatidilcolinas/metabolismo , Fosfolipasas A1/clasificación , Fosfolipasas A1/genética , Fosfolipasas A1/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/crecimiento & desarrollo
16.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269548

RESUMEN

Grain size, grain number per panicle, and grain weight are crucial determinants of yield-related traits in cereals. Understanding the genetic basis of grain yield-related traits has been the main research object and nodal in crop science. Sorghum and maize, as very close C4 crops with high photosynthetic rates, stress tolerance and large biomass characteristics, are extensively used to produce food, feed, and biofuels worldwide. In this review, we comprehensively summarize a large number of quantitative trait loci (QTLs) associated with grain yield in sorghum and maize. We placed great emphasis on discussing 22 fine-mapped QTLs and 30 functionally characterized genes, which greatly hinders our deep understanding at the molecular mechanism level. This review provides a general overview of the comprehensive findings on grain yield QTLs and discusses the emerging trend in molecular marker-assisted breeding with these QTLs.


Asunto(s)
Sitios de Carácter Cuantitativo , Sorghum/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Mapeo Cromosómico , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Fotosíntesis , Fitomejoramiento , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Zea mays/genética , Zea mays/metabolismo
17.
BMC Plant Biol ; 22(1): 127, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35303806

RESUMEN

BACKGROUND: Inflorescence architecture and floral development in flowering plants are determined by genetic control of meristem identity, determinacy, and maintenance. The ear inflorescence meristem in maize (Zea mays) initiates short branch meristems called spikelet pair meristems, thus unlike the tassel inflorescence, the ears lack long branches. Maize growth-regulating factor (GRF)-interacting factor1 (GIF1) regulates branching and size of meristems in the tassel inflorescence by binding to Unbranched3. However, the regulatory pathway of gif1 in ear meristems is relatively unknown. RESULT: In this study, we found that loss-of-function gif1 mutants had highly branched ears, and these extra branches repeatedly produce more branches and florets with unfused carpels and an indeterminate floral apex. In addition, GIF1 interacted in vivo with nine GRFs, subunits of the SWI/SNF chromatin-remodeling complex, and hormone biosynthesis-related proteins. Furthermore, key meristem-determinacy gene RAMOSA2 (RA2) and CLAVATA signaling-related gene CLV3/ENDOSPERM SURROUNDING REGION (ESR) 4a (CLE4a) were directly bound and regulated by GIF1 in the ear inflorescence. CONCLUSIONS: Our findings suggest that GIF1 working together with GRFs recruits SWI/SNF chromatin-remodeling ATPases to influence DNA accessibility in the regions that contain genes involved in hormone biosynthesis, meristem identity and determinacy, thus driving the fate of axillary meristems and floral organ primordia in the ear-inflorescence of maize.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/biosíntesis , Proteínas de Plantas/metabolismo , Transcriptoma , Zea mays/genética , Secuenciación de Inmunoprecipitación de Cromatina , Expresión Génica , Fusión Génica , Genes Reporteros , Inflorescencia/anatomía & histología , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Mutación con Pérdida de Función , Meristema/anatomía & histología , Meristema/genética , Meristema/crecimiento & desarrollo , Fenotipo , Proteínas de Plantas/genética , Zea mays/anatomía & histología , Zea mays/crecimiento & desarrollo
18.
Arch Microbiol ; 204(4): 223, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347441

RESUMEN

This study characterized the lipopeptide biosurfactants produced by lactic acid bacteria isolated from milk and milk products, in addition to their effect on maize plant growth. The oil displacement test was performed as a primary screening method to select the BS producing bacteria. The strain LM5.2 had the maximum emulsification index of 45.1 ± 3, reduced the surface tension to 32.98 ± 0.23% among all the isolates, and efficiently produced 945.26 ± 4.62 mg/l of biosurfactants within 48 h in MRS broth under the optimum conditions. The isolate LM5.2 was identified using physiochemical tests and 16S rRNA gene sequencing as E. faecium. The biosurfactant was purified by TLC and identified as lipopeptide-like iturins and surfactins based on Rf values. Mass spectroscopy, NMR, and FTIR analysis also confirmed the biosurfactant's identity as the derivatives of iturin and surfactin. In vitro biosurfactant application significantly enhanced seedling growth at an optimal concentration of 450 µg/ml. Plant treatment (pot experiment) with E. faecium LM5.2 significantly promoted Zea mays growth compared to the control. To the best of our knowledge, this is the first report of lipopeptide biosurfactant production by E. faecium. Moreover, the study also showed that the biosurfactant and biosurfactant-producing E. faecium LM5.2 could be an eco-friendly plant growth-promoting agent.


Asunto(s)
Enterococcus faecium , Lipopéptidos , Zea mays/crecimiento & desarrollo , Enterococcus faecium/química , Enterococcus faecium/genética , ARN Ribosómico 16S/genética , Tensoactivos/química , Tensoactivos/farmacología , Zea mays/microbiología
19.
ScientificWorldJournal ; 2022: 5129423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237114

RESUMEN

This study was conducted in Tanahun district of Gandaki Province, Nepal, to analyze the land cover change over two decades, the migration effect in land cover, and the impact caused in crop production by Rhesus macaque. Landsat TM/ETM+ for land use of 2000 and 2010 extracted by ICIMOD and Landsat 8 OLI/TIRS satellite images for land cover 2019 were downloaded from the USGS website. A purposive sample for household survey was carried out based on crops damaged by the monkey. Two hundred and fifty households were taken as samples. The Landsat images were analyzed by ArcGIS, and the social data were analyzed using SPSS and MS Excel. Land cover change data revealed increment of forest cover from 36.57% to 40.91% and drastic decrease in agriculture crops from 57.52% to 43.78% in the period of 20 years. The accuracy of the data showed overall classification accuracy of 86.11%, 81.08%, and 75% with overall kappa statistics 0.83, 0.77, and 0.74, respectively. The migration effect in the land cover was related to remittance and migrated members and found a significant positive relationship. Analyzing the trend of production with an increase in the forest cover, 21% decrease in paddy, 5% decrease in maize, and 26% decrease in millet were found as compared to the production in 2000. The econometric model concluded that the quantity of crop damage was negatively significant in relation to distance from forest and distance from water body while positively significant to distance from settlements and distance from owner's home. The quantity of crop damage was estimated 113.89 kg per household, and the cost was 78.82 USD. This study recommends active forest management; regular thinning, and weeding. Remittance generated should be invested in the agriculture field by the households. Damage relief should be made available for the damage cost by Rhesus macaque.


Asunto(s)
Producción de Cultivos , Producción de Cultivos/métodos , Producción de Cultivos/estadística & datos numéricos , Ambiente , Bosques , Pradera , Mijos/crecimiento & desarrollo , Modelos Estadísticos , Nepal , Oryza/crecimiento & desarrollo , Imágenes Satelitales , Zea mays/crecimiento & desarrollo
20.
BMC Microbiol ; 22(1): 57, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35168566

RESUMEN

BACKGROUND: Soybean-corn intercropping is widely practised by farmers in Southwest China. Although rhizosphere microorganisms are important in nutrient cycling processes, the differences in rhizosphere microbial communities between intercropped soybean and corn and their monoculture are poorly known. Additionally, the effects of cadmium (Cd) pollution on these differences have not been examined. Therefore, a field experiment was conducted in Cd-polluted soil to determine the effects of monocultures and soybean-corn intercropping systems on Cd concentrations in plants, on rhizosphere bacterial communities, soil nutrients and Cd availability. Plants and soils were examined five times in the growing season, and Illumina sequencing of 16S rRNA genes was used to analyze the rhizosphere bacterial communities. RESULTS: Intercropping did not alter Cd concentrations in corn and soybean, but changed soil available Cd (ACd) concentrations and caused different effects in the rhizosphere soils of the two crop species. However, there was little difference in bacterial community diversity for the same crop species under the two planting modes. Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria and Firmicutes were the dominant phyla in the soybean and corn rhizospheres. In ecological networks of bacterial communities, intercropping soybean (IS) had more module hubs and connectors, whereas intercropped corn (IC) had fewer module hubs and connectors than those of corresponding monoculture crops. Soil organic matter (SOM) was the key factor affecting soybean rhizosphere bacterial communities, whereas available nutrients (N, P, K) were the key factors affecting those in corn rhizosphere. During the cropping season, the concentration of soil available phosphorus (AP) in the intercropped soybean-corn was significantly higher than that in corresponding monocultures. In addition, the soil available potassium (AK) concentration was higher in intercropped soybean than that in monocropped soybean. CONCLUSIONS: Intercropped soybean-corn lead to an increase in the AP concentration during the growing season, and although crop absorption of Cd was not affected in the Cd-contaminated soil, soil ACd concentration was affected. Intercropped soybean-corn also affected the soil physicochemical properties and rhizosphere bacterial community structure. Thus, intercropped soybean-corn was a key factor in determining changes in microbial community composition and networks. These results provide a basic ecological framework for soil microbial function in Cd-contaminated soil.


Asunto(s)
Bacterias/genética , Cadmio/análisis , Contaminación Ambiental , Rizosfera , Microbiología del Suelo , Zea mays/crecimiento & desarrollo , Agricultura/métodos , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Cadmio/metabolismo , China , Productos Agrícolas/microbiología , Microbiota/efectos de los fármacos , Microbiota/genética , ARN Ribosómico 16S/genética , Suelo/química , Zea mays/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...